3.8.1 \(\int x^{-1+3 (1+p)} (b+c x^3)^p (b+2 c x^3) \, dx\)

Optimal. Leaf size=27 \[ \frac {x^{3 (p+1)} \left (b+c x^3\right )^{p+1}}{3 (p+1)} \]

________________________________________________________________________________________

Rubi [A]  time = 0.01, antiderivative size = 27, normalized size of antiderivative = 1.00, number of steps used = 1, number of rules used = 1, integrand size = 27, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.037, Rules used = {449} \begin {gather*} \frac {x^{3 (p+1)} \left (b+c x^3\right )^{p+1}}{3 (p+1)} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[x^(-1 + 3*(1 + p))*(b + c*x^3)^p*(b + 2*c*x^3),x]

[Out]

(x^(3*(1 + p))*(b + c*x^3)^(1 + p))/(3*(1 + p))

Rule 449

Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Simp[(c*(e*x)^(m
+ 1)*(a + b*x^n)^(p + 1))/(a*e*(m + 1)), x] /; FreeQ[{a, b, c, d, e, m, n, p}, x] && NeQ[b*c - a*d, 0] && EqQ[
a*d*(m + 1) - b*c*(m + n*(p + 1) + 1), 0] && NeQ[m, -1]

Rubi steps

\begin {align*} \int x^{-1+3 (1+p)} \left (b+c x^3\right )^p \left (b+2 c x^3\right ) \, dx &=\frac {x^{3 (1+p)} \left (b+c x^3\right )^{1+p}}{3 (1+p)}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 0.10, size = 97, normalized size = 3.59 \begin {gather*} \frac {x^{3 p+3} \left (b+c x^3\right )^p \left (\frac {c x^3}{b}+1\right )^{-p} \left (2 c (p+1) x^3 \, _2F_1\left (-p,p+2;p+3;-\frac {c x^3}{b}\right )+b (p+2) \, _2F_1\left (-p,p+1;p+2;-\frac {c x^3}{b}\right )\right )}{3 (p+1) (p+2)} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[x^(-1 + 3*(1 + p))*(b + c*x^3)^p*(b + 2*c*x^3),x]

[Out]

(x^(3 + 3*p)*(b + c*x^3)^p*(b*(2 + p)*Hypergeometric2F1[-p, 1 + p, 2 + p, -((c*x^3)/b)] + 2*c*(1 + p)*x^3*Hype
rgeometric2F1[-p, 2 + p, 3 + p, -((c*x^3)/b)]))/(3*(1 + p)*(2 + p)*(1 + (c*x^3)/b)^p)

________________________________________________________________________________________

IntegrateAlgebraic [F]  time = 0.04, size = 0, normalized size = 0.00 \begin {gather*} \int x^{-1+3 (1+p)} \left (b+c x^3\right )^p \left (b+2 c x^3\right ) \, dx \end {gather*}

Verification is not applicable to the result.

[In]

IntegrateAlgebraic[x^(-1 + 3*(1 + p))*(b + c*x^3)^p*(b + 2*c*x^3),x]

[Out]

Defer[IntegrateAlgebraic][x^(-1 + 3*(1 + p))*(b + c*x^3)^p*(b + 2*c*x^3), x]

________________________________________________________________________________________

fricas [A]  time = 0.43, size = 32, normalized size = 1.19 \begin {gather*} \frac {{\left (c x^{4} + b x\right )} {\left (c x^{3} + b\right )}^{p} x^{3 \, p + 2}}{3 \, {\left (p + 1\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^(2+3*p)*(c*x^3+b)^p*(2*c*x^3+b),x, algorithm="fricas")

[Out]

1/3*(c*x^4 + b*x)*(c*x^3 + b)^p*x^(3*p + 2)/(p + 1)

________________________________________________________________________________________

giac [B]  time = 0.26, size = 56, normalized size = 2.07 \begin {gather*} \frac {{\left (c x^{3} + b\right )}^{p} c x^{4} e^{\left (3 \, p \log \relax (x) + 2 \, \log \relax (x)\right )} + {\left (c x^{3} + b\right )}^{p} b x e^{\left (3 \, p \log \relax (x) + 2 \, \log \relax (x)\right )}}{3 \, {\left (p + 1\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^(2+3*p)*(c*x^3+b)^p*(2*c*x^3+b),x, algorithm="giac")

[Out]

1/3*((c*x^3 + b)^p*c*x^4*e^(3*p*log(x) + 2*log(x)) + (c*x^3 + b)^p*b*x*e^(3*p*log(x) + 2*log(x)))/(p + 1)

________________________________________________________________________________________

maple [A]  time = 0.04, size = 26, normalized size = 0.96 \begin {gather*} \frac {x^{3 p +3} \left (c \,x^{3}+b \right )^{p +1}}{3 p +3} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^(2+3*p)*(c*x^3+b)^p*(2*c*x^3+b),x)

[Out]

1/3*x^(3+3*p)*(c*x^3+b)^(p+1)/(p+1)

________________________________________________________________________________________

maxima [A]  time = 0.69, size = 35, normalized size = 1.30 \begin {gather*} \frac {{\left (c x^{6} + b x^{3}\right )} e^{\left (p \log \left (c x^{3} + b\right ) + 3 \, p \log \relax (x)\right )}}{3 \, {\left (p + 1\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^(2+3*p)*(c*x^3+b)^p*(2*c*x^3+b),x, algorithm="maxima")

[Out]

1/3*(c*x^6 + b*x^3)*e^(p*log(c*x^3 + b) + 3*p*log(x))/(p + 1)

________________________________________________________________________________________

mupad [B]  time = 4.90, size = 47, normalized size = 1.74 \begin {gather*} {\left (c\,x^3+b\right )}^p\,\left (\frac {c\,x^{3\,p+2}\,x^4}{3\,p+3}+\frac {b\,x\,x^{3\,p+2}}{3\,p+3}\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^(3*p + 2)*(b + c*x^3)^p*(b + 2*c*x^3),x)

[Out]

(b + c*x^3)^p*((c*x^(3*p + 2)*x^4)/(3*p + 3) + (b*x*x^(3*p + 2))/(3*p + 3))

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**(2+3*p)*(c*x**3+b)**p*(2*c*x**3+b),x)

[Out]

Timed out

________________________________________________________________________________________